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ABSTRACT

A Chance Constrained Multiperiod Model

for Inventory Management

by

Harry N. Newton, B.S., B.S.

SUPERVISING PROFESSOR: A. CHARNES

We address the multi-item, multi-period inventory control problem

(with stochastic customer requisitions and leadtimes for resupply) at each Air

Force hasejlel supply stores for Budget Code 1" items subject to probabilis-

tic constraints on a) the maximum dollar investment; b) the minimum prob-

ability of immediately meeting customer requisitions on high priority itenms;

and c) meeting previously unfilled demands on high priority items as quickly

as possible.

We develop a chance constrained program for this problem that will

* .yield decision rules expressing the decision variables (quantities of each item

iv 3"



)to order at each period) that axe consistent with the constraints above and

which maximize the sum of the probabilities of meeting customer requisitions

on all items over a specified number of periods. We then develop an equivalent

deterministic program whose solution will determine the coefficients of these

decision rules.
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Chapter 1

Introduction

1.1 Overview

We will address inventory control for consumable items (verses re-

pairable items) at Air Force base-level supply stores. Our objective is to manage

the inventory at the supply store so that we meet as many customer requisitions

as possible for n items over N periods subject to a budget constraint. Customer

requisitions and re-supply leadtimes are stochastic random variables considered

stochastically independent. Further, we want to be confident of meeting cus-

tomer requisitions on high priority items. We assume that requisitions we can't

meet from stock on-hand can be supplied later (i.e. complete backlogging), but

we want to guarantee that unfilled requisitions for high priority items will be

filled as soon as possible.

In this report I'll start with a single-period model that isn't very

realistic but whose structure allows solutions to be developed more easily, then

move to a more complicated model which is much closer to reality. The first

model will seek to minimize Expected Backorder Costs times a weighting factor

set for each item.

The second model will seek to maximize the sum of the probabilities

of meeting customer requisitions on n items across N periods subject to chance
"'constraints concerning: a) dollars obligated; b) meeting requisition demands
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for important items; and c) meeting unfilled requisition on important items as

quickly as possible.

1.2 Background on the Current Air Force System

Currently the Air Force bases use a software package called the Stan-

dard Base Supply System (SBSS) to compute the leveling parameters for each

item in their consumable inventories. The SBSS sets these parameters fo- each

item:

ri Reorder Point-when the inventory position of item i is below ri then an

order is placed

qj Quantity to Order-any orders placed will be for this quantity

Base-level purchases for consumable items are funded through a

"stock fund." New orders can be placed to replenish the inventory only if

enough funds are available in the "stock fund." When a customer "buys" an

item from the base's inventory, money for the item is transferred from one of

his funds (usually O&M-Operations and Maintenance) to the "stock fund."

While the formulas used to set these parameters in the SBSS are

designed to reduce long-run costs for the inventory, they ignore any constraints

on the solution. The parameters are computed independently for each item,

based only on the items past demand pattern, cost, and estimates of ordering

and holding costs. These parameters are intended to be used in a continuous

review inventory system, i.e. the inventory level of each item i is continuously

monitored and when the level drops below ri, an order for qi units of item i
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should be placed. But, since these orders must be funded from the "stock fund,"

often its impossible to place this order. Consequently the parameters the SBSS

computes are often unusable when daily decisions are made on what quantities

of which items need to be order while staying within budget constraints.



Chapter 2

A Single Period Model

In this chapter we will consider a formulation of the Inventory Control

problem for a single period of length L days. The objective will be to determine

a single order-up-to parameter, yi 5or each item, so that if the starting inventory

is y for each item, then the sum over all items of Weighted Expected Backorders

will be minimized for the period. These yi must be chosen so that the value of

the inventory does not exceed a budget constraint of Imazdollars.

2.1 Notation

L Length of Period in days

0 Random Variable for the number of customer demands for the period.

[UNITS]

fi(O) Probability density function for the number of demands of item i for the

period

ci Unit Cost of item i [per UNIT]

'ma Budget Constraint in $'s for on-hand inventory

yi VARIABLE-optimal starting on-hand inventory for item i. [UNITS]

7ri Weighting Factor for each backorder of item i [per UNIT]

4
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Ei(yi) Expected number of backorders for item i for the period if the starting

inventory is y. [UNITS]

2.2 Assumptions

9 Single Period model of length L days

e Stock is raised to yi before beginning of period

* No ordering of stock is permitted during period

e Maximum investment in inventory is Imaxdollars

* Demand for each item is stochastically independent of the other items'

demands

o The distribution of demands for each item i can be accurately approxi-

mated by a known finite discrete distribution.

This single-period model is formulated:

min E L riEi(yi) (2.1)

S.t. " ilciYi _ V

yj >OVi= 1,...,n

yi is an integer Vi = 1,..., n

with Ei(yi) = the expected value of non-negative (0 - yi)

E(y,) = fey,(O - yi)f 2 (O)dO
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2.3 A Continuous Relaxation

If we drop the constraint that the computed yi be integers and instead

treat them as continuous, our problem becomes

n

min 7riEi(yi)
i=1

S.t. E' iciYi < V (2.2)

Yi > 0 Vi= 1,...,n

The expected number of backorders of item i for the period, given yi,

denoted Ei(yi) is

Ei(yi) = fyi(0 - yi)f (0)dO. (2.3)

Note that Eiis truncated for 0 values that can be met by on-hand

inventory, i.e. for 0 < yi.

By replacing (0 - yi) by max{0, (0 - yi)}, denoted [0 - yi] + , we can

rewrite Ei integrating over all nonnegative values of 0.

Ei= 1'[ - yi]+fi(O)dO (2.4)

Let pi,, = Probability{a units of item i are demanded}. By the

assumption that the demand can be approximated by a finite discrete distri-

kki

bution, there exists ki for each i such that, .,l~x = 1, then

Ei(yi) = E,=1 (Pi,, * [00 - yi]+ )

So our model can be formulated
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min E {i=E!i (pi,,.* [0. - y,]+) (

c=Ciyi < V

yi > 0 Vi=l,...,n

With the E expression written in this form, the problem is still a

non-linear problem (since the max function is non-linear). However, since [.]+

is convex, the objective function is convex.

Now, since the indices of the objective function are now constant,

i.e. not dependent on the yi, this model can be coded for optimization by any

non-linear optimization package that allows non-smooth objective functions.

However, we can get better results if we use the following completely

equivalent Linear Programming Model.
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2.4 An Equivalent LP formulation

The only non-linear term in the objective function is [0 - yi]+ . This

maximum function can rewritten

max{0, 0 -yi} = 1 {10 - iI + (0 - yi)} (2.6)

Now, 10 - yiI is the only nonlinear term. To replace by a linear term,

let 0. - yi - 6;+ + b.,. = 0 (2.7)

where b's are non-negative slack variables and 0 , represents demands of a units.

Lemma 1 ZT for the following formulation will also be optimal for (2.5).

min Z Pik [6i,+ +67, + 0, - Yi]}• (2.8)

i=1 I 0=1 6+6

Proof: For each i, a combination, if pi,,, > 0, then at the min of this function,

+, 6j = 0. i.e. at least one of the 6's is zero. Otherwise 3f > 0 such that

= 6.  -and

satisfy condition 2.7 and produce a lower minimum value for the objective

function 2.8. Since one of the b's are zero, 10, - ii = 6, + 6,. So 2.8 is
equivalent to 2.5 for i, a combinations such that pi,, > 0.

On the other hand, for i, a combinations where pi, = 0, then

p,* [64. + 6b, o + 0 - YJ = 0 = p, * [o - Y]
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and 2.8 is trivially equivalent to 2.5. QED

So we can reformulate our initial problem as the following completely

linear programming problem.

min =1 {E! '-Pi,Q [ + 91 - Y}

S.t.

!= iYi _ 1ma .(2.9)
Yi +,,t -bj, = 0 for a 1,••,ki

for i = 1,...,n

S, 6, ,, >  0 for i =1, ,n

Conclusion: If we approximate our demand distribution with a finite

discrete distribution, our initial non-linear formulation (2.5) can be written as

the completely equivalent linear programming problem (2.9). In fact, if we

compute the solution with an adjacent extreme point algorithm, then by the

LIEP theorem, 'at each iteration (basic solution), at most one of the 6+,t b-will

be positive.

'Prof. Charnes' Linear Independent Extreme Points (LIEP) Theorem (1950), see [5].



Chapter 3

A Chance Constrained Multiperiod Model for
Inventory Management

3.1 Problem Statement

The objective is to maximize the sum of the probabilities of filling

all customer requisitions at a base supply store for n inventory items over the

specified N periods through the determination for each period of (stochastic)

decision rules from the class of "informationally feasible" rules linear in the

requisitions. The decision variables expressed by these rules will be the quan-

tity of each item to order for each period which will satisfy probabilistic, e.g.

"chance", constraints concerning: a) dollars obligated; b) meeting requisition

demands for important items; and c) unfulfilled customer requisitions for im-

portant items.

We will concentrate only on consumables items (as distinct from re-

pairable items). The Air Force refers to the items we will concentrate on as

"Budget Code 1" items of "XB3" items. These items are ordered by the base

supply store and paid for from the base's "stock fund" (managed by the base).

3.2 Assumptions

* Customer requisitions (called "Sales") to be filled each period are random
"" variables with known joint distribution functions.

10
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" Orders in each period are placed once by the supply store.

" Time of arrival of orders ("Receipts") from time of order is stochastic, i.e.

the probabilities of arrival in later periods are known. When an order for

an item arrives, the quantity is exactly what was ordered. Further the

stochastic arrivals of orders are assumed to be stochastically independent,

both from other orders of the same item and orders of different items.

" Sales for each period that cannot be met from stock on-hand at the

beginning of the period can be supplied later.

" We can identify a subset of important items for which we want to insure

with high probability meeting customer requisitions.

" The cost of each item is constant throughout the N period horizon.

" Money for each order is obligated in the same period in which the order

is placed. Funds for the requisitions (sales) in a period are received in

the period the requisition is placed, even if the requisition is filled in a

later period.

3.3 Formulation

Let

ci [dollars per unit] Cost of each unit of item i.

ma, [dollars] The upper budget limit on the amount of money that can be

invested in the inventory.



12

Si(t) [units] Customer requisitions ("Sales") of item i during period t (random

variable)

R,(t) [units] Receipts of item i up through period t. These units are available

to satisfy unfilled requisitions through period t - 1 (random variable)

Y,(t) [units] Quantity of item i to order at period t (Decision Variable)

Ii(t) [units] Inventory on-hand of item i at beginning of period t. This quantity

is available to satisfy Sales for period t.

e for i = 1,...,n

* for t = 1,...,N

3.4 Formulation

We want to maximize the sum over all the N periods and over all the

n items of the probabilities of satisfying requisitions ("Sales"), i.e.

N n
max 1- E P(Ii(t) >Si(t))

t=l i=1

subject to the various constraints described generally above.

These constraints contain stochastic elements both with regard to

time, e.g. as in receipt of orders placed, and with regard to conformance of

ordering with Air Force stockage policy.
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3.5 Chance Constraints and Their Random Variables

Ii(t) is a complicated function of the previous orders, receipts and

sales. We suppose that individual receipts are in the same amounts as orders.

However, we assume that the number of periods between placing an order and

that order being available to fill customer requisitions is a discrete random

variable with known probabilities. (These probabilities may be different for

each item in the inventory.) If an order Y(t) is placed its receipt cannot be

used to satisfy customer requisitions (sales) until period t + 1, even if the order

is received in period t. Of course, it may not be received until period t + 1,

t + 2, etc.

We proceed to determine the stochastic receipts of an item at a par-

ticular period in terms of the amount and period of order placement.

For t > s, define

pi(t - s) = Prob(Order Y(s) arrives precisely in period t).

It should be noted that pi(t - s)=O for t - s > say 4.

Let Rj(Yt(s) ,t) be the amount received by period t of an order

Yi(s) placed in period s.

Then we set

0, s>t

R2(Y(s) ,t) = Y(s) with probability pi(t - s)for s < t

where pi(-) are known probabilities.
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Since the random variables of the arrivals of receipts (of the same or

different items) are assumed stochastically independent, we can write Ri(t),

the cumulative receipts of item i through period t, as the sum of independent

Ri(Y(s) ,t) random variables,

t

R,(t) = R,(Y (s) , t)
8=1

In other words, since R,(Yi(s) ,t) is either zero or the amount

Yi(s) ordered, Ri(t)can only take on values that are a im of one or more

of the previous Yi(s) 's.

For example,
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Value with probability

Rj(1) 0 J, (1 - p(

Y (1), +i (2),p(p(O

Value with probability

0,( p()(1 - p())--p()

R-.(2) = 1(3), pi()(1 - p())(l-,l)~O

Y,(1) + Y1(2), p 1pi ()pl)l-p()

11 (1) pi (2(2) (1 - p (1))(1p ())

Y1(1) + Y1(2) + Y1(3), pj(2)pj(l)pj(O)

Let

t

zi(t) = 1 f(1 - p(j))
j=1

pi (j)
P4=(1 - pi (j))

Then in general,
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Value with probbability

0 zi(t)

Y,(2) A2it

1(Mt)~zit

R, (t) = Y(1) + Y, (2) Pi,IPi,2Zi(t)

Y(1)+ Y(3) il,3it

Y2 (2) + Y, (3) Pi2,'it

E (1) + Y1(2) + . .+ Y(t) Pi,1A,2 ... itit

We will approximate Ri(t)by a random variable of Gaussian (normal)

type with the same mean and variance.

Let F1"j,= E[Y,(j)] and R&) =E[Ri(t)] where E denotes expectation

with respect to S1(t)'s, then
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Ri(t) zi(t){i,1 Aij + I',2APi, 2 + + Yipi,t
+.. + [7,., +.. + Y,.-- +.. + Ti] ,. ... Pi,.k... P0,
+..+ [7,, +... + ,]pj... Pi,

and

E[R(t)2] = jjP," + - Yi,Pi,2 + + t.
-- i ){ l ," + ...

[ +.. + Yi]Pi, ... Pit

From the above equations, we can calculate the variance of Ri(t),

Var(Ri(t)) = E [Ri(t) - Ri(t)] = E[Ri(t) - R 2(t)

The inventory available to fill sales for period t, i.e. the starting

inventory for period t, denoted by I,(t) can be written

i-1

Ii(t) = Ii(1) + Ri(t -1) - ESi(s)

s= 1

Since the quantity Ii(1) is a constant and we know the distributions

for Ri(s) and Si(s)we could obtain the exact distribution of li(t) from the con-

volution of the distribution of Ri(s) and - -Si(s). Howerver, since we make

the above approximations, we need only work with the means and variances.

3.5.1 Constraints for Meeting Requisitions of Important Items

The important items that we mentioned in the assumptions section

are "MICI" items. MIC is an acronym for Mission Impact Code. If a shortage

of a item has ever caused a mission to be cancelled, the item is coded as

""MIC1." Other items are coded "MIC2", "MIC3", or "MIC4." Ve require
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that each period's requisitions (Sales) for MIC1 items be met with at least

probability a,i.e.

P(Ii(t) _ Si(t)) >_ a, for if MIC1 for t = 1,...N

Let Di(t) Ft=l Si(k), then we can rewrite the constraint for the

MICi items,

P{I,(t) _ S,(t)} > a

as

P{Ii(1) + Ri(t - 1) - E Si(s) _ Si(t)} > a
s=1

or

P{I(1) + Ri(t - 1) _> Di(t)} > a

Taking the Si(t)'s to be normally distributed, employing linear

stochastic decision rules and approximating the Ri(t),Si(t)combinations by

normally distributed variates (e.g. using their means and approximating vari-

ances), we will invert these chance constraints in the process of obtaining a

convex nonlinear programming problem to determine the coefficients of the

optimal linear stochastic decision rules.

3.5.2 Constraints for Matching "due-ins" to "due-outs"

We call an unfilled requisition a "due-out" and each item of an out-

standing order a "due-in." For MIC1 items (high priority items), we wish to
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have each "due-out" covered by "due-ins." So for these items, the sum of all

Sales before period t should be less than or equal to the initial inventory plus

all orders through the current period t, i.e.

='- Si(k) _ I,(1) + Z,1=.Y(k) for t = .

If we let Oi(t) denote the cumulative orders through period t, i.e.

O,(t) = =jYj(k), (hence Y(k) = O,(k) - 0,(k - 1)), then we wish

to have

Di(t - 1) <5 Ii(1) + Oi(t)

These probability one chance constraints requirements can be met by

constraints on the stochastic decision rules employed for the Y1(k)'s as induced

by these constraints on the Oi(t)'s. For example, if these are to be linear,

Oi(t) = ai(t)Di(t) - bi(tWi(1

with constraints ai(t) > 1 and 0 < bi(t) < 1 for MIC1 items will insure proba-

bility one satisfaction of these MIC1 constraints.

3.5.3 Constraints on Dollars Obligated in Each Period

Since the amount of money permitted to be invested in the inventory

is limited to a budget amount, Ia, we must try to insure with high probability

that the optimal Y(t) values lead to investments in inventory that are less than

or equal to the budget limit.

As noted earlier, dollars are obligated for each order as soon as the

order is placed and funds are received for the amount of each sale (requisition)
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in the same period as the sale, even if we are unable to fill the sale from stock

on-hand at the beginning of the period.

The money obligated for item i at period t then is

ci {Ii(1) + Oi(t)- Di(t)}

The money obligated for all items then would be

ci {Ii(1) + Oi(t) - D(t)}
i=l

So our dollars obligated chance constraints can be formulated as

n

P{Z [c (I,(1) + O,(t) - D,(t))] Imax} >€ for t = ,... , N

where 4 is close to one.
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3.5.4 Summary of the Chance Constrained Problem

Using informationally feasible linear stochastic decision rules, assum-

ing the Si(t)are independent Gaussian random variables, and approximating

the Rj(t)by Gaussian random variables as indicated before, we will have the

following constraints and stochastic expressions to invert and/or re-express in

terms of the coefficients of the stochastic decision rules. We then schematically

form the convex programming problem, with linear and quadratic inequality

constraints in terms of these coefficients and an objective function. Solution

of this problem will determine the coefficients in the linear stochastic decision

rules which will be an optimal vector of linear stochastic decision rules for this

chance constrained programming problem. To summarize where we are so far

in formulae,



22

N n
maxZEZEPII(() + R?,(t - 1) ! Di (t)}

t=1 i=1

S.t.

P{ I,(l) + Rj(t - 1) > Di(t)} > a Vic MICi

for t = 1,.N

P{ E~j [ci(I,(l) + Oi(t) - Di(t))] ! I,..} > for t = 1,..'

a2(t)Di(t) - b,(t)Ij(1) = i O(t) for i = 1,...,n

for t =1,..N

-ai(t) > 1 Vic MIC1

for t A'..

a,(t) > 0 for i/NIC1 ;

for t =1,.N

0 < b(t) < 1 Vic NIC1 ;

for t=1,. .. , N

0 < bi(t) for i NICI ;

for t=1 A7.

3.6 Inverting the Chance Constraints

Next, we invert the chance constraints to form an equivalent deter-

ministic convex programming problem.

3.6.1 Inverting the Constraint for Meeting Important Items' Req-

uisitions

We can rewrite:

P{ I(1) + Ri(t - 1) ! Di(t)} >a
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as

P{R,(t - 1) - Di(t) < I,(1) } > a

From 3.5, we know the means and variances of the Gaussian random variables

with which we will approximate the distributions of the Ri(t - 1)'s. Further,

since we have the mean and variance of the Si(t)'s from their joint distri-

bution (assumed known), we can easily calculate the mean, Di(t), and vari-

ance, Var(Di(t)), of the Di(t)'s. By the linearity of expectation, the mean of

Ri(t - 1) - Di(t) is then

Ri(t- 1) - Di(t) = Ri(t - 1) - Di(t)

and the standard deviation, denoted ai(t), is

o'(t) = VVar(R,(t - 1)) + Var(D,(t))

Since the random variables have Gaussian or "normal" distribution,

the resulting distribution is Normal with mean Ri(t - 1) - Di(t)and standard

deviation ao(t). To transform into a Standard Normal expression, we subtract

the mean and divide through by the standard deviation in the chance constraint

pIRi(t- 1) - Di(t) - Ri(t- 1)- Di(t) <I(1) - Ri(t - 1) - Di(t)I
o,(t) - i(t)

Let A(.) denote the standard normal cumulative distribution func-

tion, then our constraint becomes

. I, -R,(t- 1)- D(t) >ai,(t)-
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But ./ (.) is a strictly one-to-one function and therefore has an inverse

which we denote K (.). Also note that a > .5 implies that N-' (a) > 0.

Applying A "- 1 (.) to both sides, we get

I(1) - R(t - 1) - D(t) > A/._ aao,(t)

Since oai(t)must be positive, this implies

h(1) - Ri(t - 1) - Di(t) >! aj(t)Y-1 (a) > 0

By introducing spacer variables, vi(t), we have

I(1) - Ri(t - 1) - Di(t) > vi(t) > ori(t).V - ' (a) _> 0 and hence

Ii(1) - Ri(t - 1) - Di(t) - vi(t) > 0 and vi(t) > 0 and implying

[v,(t)]l > [u(t)]2 [A' (a)] 2 . Therefore 0 > [a.(t)] 2 [Ar- 1 (a)]2 
- vi(t)2 .

(Note [a,(t)]2 = Var(R(t - 1)- D(t)).)

Combining these results with the results for the mean and variance

of Ri(.) from 3.5, the chance constraints for MICI items is inverted to the

following deterministic constraints

v,(t) > 0

I,(1) - R(t - 1) - Di(t) - v(t) > 0 (3.1)

oa(t) 2[A - ' (a)]2 - v,(t)2  < 0

Vih MIC1 ,ior t N 1,...)

where ai(t)2 is V'ar(Ri(t - 1) - D,(t)).
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3.6.2 Inverting the Constraints for Dollars Obligated in Each Period

The chance constraints for dollars obligated each period,

PIEj [c4(I,(i) + Oi(t) - Di9(t))] 5 I...} for t =1,. ... I N
i=1

can be rewritten as

PI{Z(c(I(1) )] + E[c(O1 (t) - Di(t))] !5 In..} 4

then

P{f Ec(Oj(t) - Di(t))I 5 In.. - Z[c,(I,(i))} 4
i=1 i=1

Using our stochastic decision rule restriction Oi(t) =a 2(t)Di(t) - b,(t)11 (1) the

constraint becomes,

P{f [ c,(a,(t)Dj(t) - b:(t)I:(1)- Di(t))J 5 Imax _ Zlci(I:() )]Al

or

P{ZEc(Dj(t)(a,(t) - 1) - bt(t)I:(1) )] 5 'max - ZDcz(I(i) )]l

or

nt n

P{ZE[c(Dj(t)(ai(t) - 1))] :5 Imax + Z[(b,(t) - cj)Ij(1) ]
i=1 i=1

By

the linearity of expectation, the mean of ci[i() a t - 1)]}, denoted

p(t), will be
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p(t) = .'Z={ci[(ait - 1]Di(t)}

where Di(t) denotes the mean of the cumulative sales which we can

obtain from the known joint distribution of sales.

Similarly by stochastic independence of Di(t) for different i,

Var(Z'=fci[Di(t)(ai(t) - 1)]})= E' =[ci2 (ai(t) - 1)2Var(Di(t))]

Let 6(t) represent the corresponding standard deviation. Using the

Gaussian approximation to the Di(t) distribution as before so that we can

reduce to standard normal expressions, we can rewrite this chance constraint

as

pZ 'i[ci(Di(t)(ai(t) - 1))] - ps(t) < 1max + E'=[(b,(t)-c:)1,(1) ]- it(t)
6(t) 6(t)

Letting X (.) denote the standard normal distribution, gives

Using the same argument as in 3.6.1 with > 5, we then invert this

constraint to

n

Imax + F[(b,(t) - ci)I,(1) ]- p(t) >_ 6(t).V - 1 (4) _ 0

Introducing spacer variables, w(t), we get

n

Im + _[(b,(t) - c,)I,(1) ]- p(t) > w(t) > 6(t)Ar-1 (4) > 0
i=1

-•yielding the following equivalent deterministic constraints,
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w(t) > 0

Ima + '1 [(bi(t) - ci)Ii(1) ]y-(t) - w(t) > 0 (3.2)
b2 (t)[g-1 (0)]2 _ w(t)2 < 0

for t = 1,.. . , N where p(t)and b 2(t)represent the mean and variance

of =[ci(Di(t)(ai(t) - 1))].

3.6.3 Re-expressing the Functional

The objective of the chance constrainted program, as stated before,

is

N n
maxZE)E P{Ii(1) + Ri(t- 1) > Di(t)}

t=1 i=1

We would like to maximize this sum of probabilities, but doing this would

lead to a very complicated problem for which no convenient or constructive

solution method is available, so instead we propose the following two surrogate

expressions whose maximumizations are coherent with maximization of these

probabilities.

(1) Maximize the minimum of these probabilities.

(2) Maximize the sum of the expected values of the random variables,

i.e. maxE '=1 E'[I(1) + Ri(t - 1) - Di(t)] subject to conditions implying

that these terms are non-negative.

Maximizing the minimum of these probabilities. If we choose to maxi-

mize the minimum of these probabilities, then in an exactly analogous manner

to section 3.6.1, we rewrite
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P{I,(1) + R,.(t - 1) ! Di(t)}

as

Ri(t - 1) - Di(t) - Ri(t - 1) - Di(t) _______-__ 1)__-________
PfaiR 1O'(t-) - dt 1

to get to the standard normal distribution.

Let -y,(t)be defined such that

Ar( i 1)-R (t -1) - -jI Ar (7, (t))

so Ii(l) -Ri(t - 1) - Di(t) = -yi(tM

Since Ar (.) is a strictly increasing function, maximizing on the

-y(t)will maximize on the .Ar(-yi(t)) and hence on the probabilities of filling

the requisitions when placed. Maximizing on the minimum of these probabili-

ties can be stated as

max -y

S.t. (3.3)

y,() ~-yfor i=1..n fort = 1....,IN

or

max -y

S.t.

____ ___ ____(3.4)

I,(l) .- Ri(t - 1) - 2 (t) > fo =1,.n,
ai(t)-yfoi1.,n

for t = 1, ... IAN
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We re-express this new constraint in terms of ai(.), bi(.), and-, as fol-

lows.

Note 0 < -y < 1 since 7 represents a probability. So,

Ii(1) -Ri(t - 1)- Di(t)
Ci(t) > O.

Since ai(t) > 0, we can rewrite this expression as

!i(1) - Ri(t - 1) - Di(t) >! ai(t)-y > 0.

Introducing spacer variables, ui(t), we have

h(1) - R* t- 1) - Di(t) >! ui(t) >! ai(t)-y > 0.

Yielding the following deterministic constraints,

u2(t) > 0
40() -Ri(t -1) - D(t) - u(t) > 0(35

i2- u (t)2 < 0

for i, MIC1 ,for t = 1,...,.

where oi(t) 2 is Var(Ri(t - 1) - Di(t)).

Maximizing the sum of the expected values of the original objec-

tive function. If we choose the surrogate of maximizing the sum of the ex-

pected values of the random variables, then our new objective function would be
FN nI[J1)+ _

max 1 1=I[( 1 ) +R(t - 1)-Di(t)] subject to the following additional con-

straints to insure each these terms are non-negative Ii(1) + R(t - 1)- Di() >

0 fori/MIC1
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3.7 Summary of Equivalent Deterministic Convex Pro-
gramming Problems

We now combine the results from section 3.6 to obtain the following

convex deterministic non-linear programs. All the definitions are as before.

3.7.1 Using Surrogate Objective (1)

If we choose surrogate objective (1), to maximize the minimum of the

probabilities, we obtain the following convex determin1lic program.
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max'y

S.t.

ui(t) > 0 for i MIC1

fort 1, . ,N

I(1) -Ri(t -1)- Di(t) - ui(t) > 0 for i MIC1

for t = 1,...
a,(t)2'y2 - ui(t)2 < 0 for i/ MIC1

fort 1,.. .
Ii(1) - Ri(t -1) - (t)-v(t) > 0 Vic MIC1;

for t= 1,... ,N
Var(Ri(t - 1) - Di(t))[A/-I (a)]2 -v 2(t) 2 < 0 Vie MIC;

for t = 1,.. N

vi(t) 0 ViE MIC1

for t = 1,...,N

+mZa =1 f(b,(t - C)(1) I - p(t) _ 0 for t = ,...,N
62(t)[Y- (0)]2 _ W(t) 2 < 0 for t = 1,...,N

w(t) > 0 fort=1,...,N

ai(t) > 1 Vic MIC;

for t =1,...,N

ai(t) > 0 for i MICI;

for t = 1,...,N

0 < bi(t) < 1 VicMIC1

for t = 1,...N

0 < bi(t) for i, MIC1;

fort =1,...,N
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where 62(t)is the variance of F, I[c (Dj(t)(ai(t)- 1))] and [a,(t)] 2 is

the variance of RP(t - 1) - Di(t).

3.7.2 If we Choose the Surrogate Objective (2)

If we choose surrogate objective (2), maximizing the sum of the ex-

pected values, then we have the following convex deterministic program.
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N n

maxLZI,(1) + R,(t- 1)- Di(t)
t=l i-1

s.t.

I,(l) +R(t-1)-Di(t) > 0 for i MIC1

for t =1,...,N

Ii(1) - Ri(t- 1) - A,(t) - v,(t) > 0 Vie MIC1;

for t = 1,...,N

Var(Ri(t - 1) - Di(t))[A-' (a)]2 -v,(t) 2 < 0 Vie MIC1

fort= 1,...,N

vi(t) > 0 Vie MIC1 ;

for t = 1,...,N

I.ax + ZL=I[(bj(t) - ci)Ii(1) ]- p(t) >_ 0 for t = 1,...,N
6,(t)[A-' (O)J2- w(t)2  < 0 for t = 1,...,N

w(t) > 0 fort=,...,N

ai(t) > 1 Vie MICI

for t = 1,...,N

ai(t) > 0 for i MIC1 ;

fort= 1,...,N

0< bi(t) < 1 Vie MIC1 ;

for t = 1,...,N

0 < b,(t) for i/ MICI;

fort=1,...,N

where 62(t)is the variance of I' 1 (ci (Di(t)(a,(t)- 1))1 and [a,(t)]' is the variance

of Ri(t - 1) - Di(t).
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3.7.3 Conclusion

For either surrogate objective function, a convex quadratic program-

ming problem is obtained for ai(-), bi(.), -y, and the spacer variables in these

expressions. The optimal solutions for these will lead to expressions for the

optimal stochastic decisions in terms of the Y(t)
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